Оборудование кабинета робототехники

4		Наименован	ие раздела: «Технологический профиль. Р	ОБО»	
	1.3.18	Программный-	Компьютеризированная система для		
		аппаратный	тренировки и проведения экспериментов	шт.	1.00
		комплекс по	для образования и повышения		
		робототехнике	квалификации в области электротехники		
			и электроники и цифровых технологий		
			модуль контрольно-измерительный		
			интерфейс		
			Набор сопротивлений различных		
			номиналов на печатной плате		
			Набор проводов и перемычек		
			Универсальный модуль для подключения		
			экспериментальных карт к контрольно-		
			измерительному интерфейсу		
			Курс обучения:		
			Экспериментальная карта с логическими		
			элементами		
			Экспериментальная карта с ЈК-триггером		
			Программное обеспечение курса		
			Содержание курса:		
			Базовые логические схемы		
			Таблицы переходов, обозначение на		
			схеме, логические функции и		
			циклограммы логических элементов		
			Булева алгебра		
			Экспериментальное подтверждение		
			функций и законов Буля		
			Логические элементы в технологии		
			NAND и NOR		
			Минимизация логических схем с		
			помощью карт Карно		
			Принцип работы триггера		
			Исследование ЈК-триггера (статический и		
			динамический входной сигнал /		
			потактовый режим)		
			Исследование ИС счетчика		
			Поиск ошибок		
	1.3.17	Зарядное	Зарядное устройство для зарядки		
		устройство	аккумуляторной батареи базового набора	шт.	8.00
	1.3.16	Ультразвуковой	Ультразвуковой датчик должен быть		0.00
		датчик базового	электрически и конструктивно совместим	шт.	8.00
		робототехническ	с элементами и устройствами базового		
		ого набора	робототехнического набора.		
			Ультразвуковой датчик должен		
			обеспечивать режим поиска активных		
			ультразвуковых излучателей.		
			Совместимость с элементами базового		
	1 2 15	П	робототехнического набора		
	1.3.15	Датчик цвета	Датчик цвета должен быть электрически		0.00
		базового	и конструктивно совместим с элементами	шт.	8.00
		робототехническ	и устройствами базового		
		ого набора	робототехнического набора. Датчик цвета		
			должен различать до 7 различных		

			оттенков цветов. Совместимость с элементами базового робототехнического		
			набора		
	1.3.14	Ресурсный	Ресурсный робототехнический набор		
	1.5.17	робототехническ	должен содержать пластиковые	шт.	8.00
		ий набор	конструтивные элементы, элементы	ш1.	0.00
		ии наоор			
			механических передач, колеса и диски,		
			совместимые с элементами базового		
	1 0 10	D V	робототехнического набора		
	1.3.13	Базовый	Образовательный конструктор должен		0.00
		робототехническ	представлять собой набор для разработки	шт.	8.00
		ий набор	программируемых моделей автономных		
			роботов. В состав набора должно		
			входить: комплект конструктивных		
			элементов из пластика,		
			программируемый контроллер - не менее		
			1шт, сервопривод - не менее 3шт, датчики		
			- не менее 3шт		
			Программируемый контроллер должен		
			содержать: порты для подключения		
			внешних устройств - не менее 8шт,		
			встроенный экран, коммуникационные		
			интерфейсы - WiFi или Bluetooth.		
			Программируемый контроллер должен		
			обеспечивать возможность		
			программирования роботов в среде		
			блочно-графического типа или в		
			свободно распространяемых средах		
			разработки с помощью текстового языка		
			программирования. Входящие в состав		
			конструктора компоненты должны быть		
			совместимы с конструктивными		
			1 7		
			элементами, а также обеспечивать		
			возможность конструктивной,		
			аппаратной и программной		
			совместимости с комплектующими из		
	1.00		состава набора.		
	1.3.8	Образовательный	Образовательный набор предназначен для		
		набор для	изучения основ применения технологий	шт.	3.00
		изучения	"Интернет вещей" и связи в		
		технологий связи	робототехнических системах. Комплект		
		и ІоТ	предназначен для разработки модели		
			программируемого мобильного робота,		
			обладающего встроенной системой		
			управления, обеспечивающего		
			возможность распределенного		
			управления группой роботов.		
			В состав набора должно входить: привод		
			постоянного тока с датчиком положения -		
			не менее 2шт, комплект		
			интеллектуальных датчиков, камера - не		
1	1		менее 1шт, программируемый		
			т менее тит. программируемый		

	T		ı	
		Все устройства, входящие в состав набора		
		должны быть конструктивно, аппаратно и		
		программно совместимы друг с другом.		
		Программируемый контроллер должен		
		обеспечивать возможность		
		программирования на языке JavaScript и		
		организации web-сервера обмена		
		данными через Интернет.		
		Программируемый контроллер должен		
		обеспечивать возможность подключения		
		внешних устройств с помощью		
		интерфейсов - GPIO, UART, I2C, SPI,		
		TTL, RS-485, Ethernet с поддержкой РоЕ		
		(система питания, осуществляемая через		
		проводной сетевой интерфейс,		
		позволяющая изолированно запитывать		
		устройства).		
		Комплект интеллектуальных сенсорных		
		устройств содержит - инфракрасный		
		датчик, энкодер, датчик расстояния,		
		датчик ориентации в пространстве.		
		Интеллектуальные датчики должны		
		представлять собой устройство на основе		
		вычислительного микроконтроллера и		
		встроенного измерительного элемента.		
		Интеллектуальные датчики должны		
		обладать встроенным цифровым и		
		аналоговым интерфейсом для передачи		
		данных, а также встроенным		
		последовательным интерфейсом для		
		объединения друг с другом в сенсорные		
		системы.		
1.3.6 Четыр	ёхосевой	Учебный робот-манипулятор должен		
учебны	ый робот-	быть предназначен для освоения	шт.	1.00
манип		обучающимися основ робототехники, для		
модулі	ьными	подготовки обучающихся к внедрению и		
смення	ЫМИ	последующему использованию роботов в		
насадк		промышленном производстве.		
		Тип робота-манипулятора –		
		четырёхосевой: требуется соответствие.		
		Должна быть возможность оснащения		
		сменными насадками (например,		
		держатель карандаша или фломастера,		
		пневматическая присоска, захватное		
		устройство, устройство для лазерной		
		гравировки или устройство для 3D-		
		печати).		
		Материал корпуса –алюминий: требуется		
		соответствие. Диаметр рабочей зоны (без		
		учета навесного инструмента и четвертой		
		оси) не менее 340 мм. Точность		
		позиционирования не более 0,2 мм.		
		Интерфейс подключения – USB,		
		Bluetooth: требуется соответствие.		

	Должен иметь возможность автономной		
	работы и внешнего управления: требуется		
	соответствие. Управляющий контроллер		
	должен быть совместим со средой		
	Arduino: требуется соответствие.		
	Управляющий контроллер должен быть		
	совместим со средой программирования		
	Scratch, языком программирования С и		
	облачными сервисами требуется. Должен		
	поддерживать перемещение в декартовых		
	координатах и углах поворота осей, с		
	заданной скоростью и ускорением.		
	Робот-манипулятор должен быть		
	укомплектован как минимум		
	следующими сменными насадками:		
	пневматическая присоска, захватное		
	устройство.		
1.3.5 Комплект для	Комплект для разработки и изучения		
изучения	моделей программируемых автономных	шт.	1.00
операционных	мобильных роботов.		
систем реально			
времени и	разрабатывать блочно-модульную		
систем	конструкцию мобильного робота. В		
управления	состав мобильного робота должно		
автономных	входить:		
мобильных	Привод ведущих колес - не менее 2шт.		
роботов	Привод должен представлять собой		
	электромеханическую сборку на основе		
	двигателя постоянного тока, редуктора,		
	датчика положения вала, система		
	управления привода должна обеспечивать		
	возможность объединения приводов с		
	помощью последовательного интерфейса,		
	возможность задания параметров		
	контуров управления, управление		
	вращением привода по скорости и		
	положению, контроль нагрузки.		
	Программируемый контроллер - не менее		
	1шт. Программируемый контроллер		
	должен обладать интерфейсами - USB,		
	UART, TTL, RS485, CAN для		
	коммуникации с подключаемыми		
	внешними устройствами, а также		
	цифровыми и аналоговыми портами		
	ввода/вывода.		
	Одноплатный микрокомпьютер - не		
	менее 1шт. Одноплатный		
	микрокомпьютер должен представлять		
	собой устройство с архитектурой		
	микропроцессора ARM, должен обладать		
	не менее 2 вычислительными ядрами с		
	тактовой частотой не менее 1ГГц.		
	Лазерный сканирующий дальномер - не		
	менее 1шт. Лазерный сканирующий		
	дальномер должен обеспечивать диапазон		

измерения дальности до объектов не менее 2.5 метров и сектор сканирования не менее 360 угловых градусов. Датчик линии – не менее 3 шт. Датчик должен обеспечивать детектирование линии на контрастном фоне и передавать данные в программируемый контроллер о ее наличии путем передачи аналогового сигнала, цифрового сигнала и путем передачи цифрового пакета данных. Датчика цвета – не менее 1 шт. Датчик должен различать цветовой оттенок расположенного рядом с ним объекта в RGB нотации и обеспечивать передачу данных в программируемый контроллер о значении каждого цветового канала в виде цифрового пакета данных. Массив ИК-датчиков - не менее 1шт. Массив ИК-датчиков должен быть предназначен для отслеживания линии для движения мобильного робота. Массив должен содержать не менее 6шт ИКдатчиков, расположенных на одной линии.

Система технического зрения - не менее 1шт. Система технического зрения должен обладать совместимостью с различными программируемыми контроллерами с помошью интерфейсов -TTL, UART, I2C, SPI, Ethernet. Система технического зрения должна обеспечивать возможность изучения основ применения алгоритмов машинного обучения и настройки параметров нейросетей. Система технического зрения должна обеспечивать функционал распознавания различных геометрических объектов по набору признаков, распознавания графических маркеров типа Aruco и др, распознавания массивов линий и элементов дорожных знаков и разметки. Система управления мобильного робота должна позволять осуществлять анализ окружающей обстановки в процессе движения мобильного робота и динамическом изменении окружающей обстановки, осуществлять формирование карты локальной обстановки вокруг робота и локализация положения робота на карте, построение глобальной карты окружающего пространства. Система управления мобильного робота должна позволять осуществлять анализ плана/карты окружающего пространства,

		обнаружение окружающих объектов,		
		автономное планирование маршрута и		
		объезда статических и динамических		
		препятствий. Система управления		
		мобильного робота должна обеспечивать		
		возможность разметку карты		
		окружающего пространства на зоны с		
		различными признаками, задаваемыми		
		пользователем (зоны запрета для		
		движения, ограничения скорости и т.п.).		
		Система управления мобильного робота		
		должна обеспечивать возможность		
		задания точек и зон на карте		
		окружающего пространства для		
		автономного перемещения между ними.		
		Система управления мобильного робота,		
		включающая в себя подсистемы, такие		
		как - система управления движением		
		робота, система сбора и обработки		
		сенсорной информации, система		
		построения карты окружающего		
		пространства и система навигации,		
		должна быть реализована на базе		
		программируемого контроллера и		
		одноплатного микрокомпьютера, а также		
		устройств, входящих в состав комплекта.		
		В состав комплекта должно входить		
		программное обеспечение для		
		программирования в текстовом редакторе		
		на подобии Arduino IDE,		
		программировании с помощью скриптов		
		на языке Python, разработки систем		
		управления на основе ROS. Так же в		
		состав комплект должна входить		
		виртуальная модель мобильного робота в		
		виртуальном окружении для		
		моделирования алгоритмов систем		
		управления с помощью графической		
1 2 4	07	среды.		
1.3.4	Образовательный	Образовательный комплект должен быть	_	(00
	набор для	предназначен для изучения	шт.	6.00
	изучения	робототехнических технологий, основ		
	многокомпонентн	информационных технологий и		
	ых	технологий промышленной		
	робототехническ	автоматизации, а также технологий		
	их систем и	прототипирования и аддитивного		
	манипуляционны	производства.		
	х роботов	В состав комплекта должно входить:		
		1) Интеллектуальный сервомодуль с		
		интегрированной системой управления,		
		позволяющей объединять сервомодули		
		друг с другом по последовательному		
		интерфейсу - не менее 6шт;		
		2) Робототехнический контроллер		
		модульного типа, представляющий собой		
	•	· · · · · · · · · · · · · · · ·		

одноплатный микрокомпьютер с операционной системой Linux, объединенный с периферийным контроллером с помощью платы расширения. Робототехнический контроллер должен удовлетворять техническим характеристикам: кол-во ядер встроенного микрокомпьютера - не менее 4, тактовая частота ядра - не менее 1,2 ГГц, объем ОЗУ - не менее 512 Мб, наличие интерфейсов - SPI, I2C, TTL, UART, PWM, цифровые и аналоговые порты для подключения внешних устройств, а также WiFi или Bluetooth для коммуникации со внешними устройствами. Робототехнический контроллер должен обеспечивать возможность программирования с помощью средств языков C/C++, Python и свободно распространяемой среды Arduino IDE, а также управления моделями робототехнических систем с помощью среды ROS. 3) Вычислительный модуль со встроенным микроконтроллером, обладающим цифровыми и аналоговыми портами ввода/вывода, а также модулем беспроводной связи типа Bluetooth или WiFi для создания аппаратнопрограммных решений и "умных/смарт"устройств для разработки решений "Интернет вещей"- не менее 1шт; Вычислительный модуль должен обеспечивать одновременную возможность подключения силовой нагрузки и коммуникации посредством сети Ethernet за счет встроенных средств или подключаемых периферийных плат. 4) Модуль технического зрения, представляющий собой устройство на базе вычислительного микроконтроллера и интегрированной камеры, обеспечивающее распознавание простейших изображений на модуле за счет собственных вычислительных возможностей - не менее 1шт: 5) Комплект конструктивных элементов из металла для сборки модели манипуляторов с плоско-параллельной и угловой кинематикой - не менее 1шт; 6) Комплект элементов для сборки вакуумного захвата - не менее 1шт. Образовательный робототехнический комплект должен содержать набор библиотек трехмерных моделей для

	ı	T			
			прототипирования моделей мобильных и		
			манипуляционных роботов различного		
			типа. В состав комплекта должны		
			входить инструкции и методические		
			указания по разработке трехмерных		
			моделей мобильных роботов,		
			манипуляционных роботов с различными		
			типами кинематики (угловая кинематика,		
			плоско-параллельная кинематика, дельта-		
			кинематика, SCARA или рычажная		
			кинематика, платформа Стюарта и т.п.).		
			Образовательный робототехнический		
			комплект должен содержать инструкции		
			по проектированию роботов, инструкции		
			и методики осуществления инженерных		
			· · · · · · · · · · · · · · · · · · ·		
			расчетов при проектировании (расчеты		
			нагрузки и моментов, расчет мощности		
			приводов, расчет параметров кинематики		
			и т.п.), инструкции по разработке систем		
			управления и программного обеспечения		
			для управления роботами, инструкции и		
			методики по разработке систем		
			управления с элементами искусственного		
			интеллекта и машинного обучения.		
	1.3.7	Комплект полей и	Комплект полей и соревновательных		
		соревновательны	элементов	шт.	1.00
		х элементов			
	1.3.3	Образовательный	Комплект для изучения основ		
		набор по	электроники и робототехники на уроке	ШТ.	6.00
		электронике,	технологии.		
		электромеханике	Набор должен быть предназначен для		
		И	проведения учебных занятий по		
		микропроцессорн	электронике и схемотехнике с целью		
		ой технике	изучения наиболее распространенной		
		on realine	элементной базы, применяемой для		
			инженерно-технического творчества		
			учащихся и разработки учебных моделей		
			роботов. Набор должен позволять		
			учащимся на практике освоить основные		
			технологии проектирования		
			робототехнических комплексов на		
			примере учебных моделей роботов, а		
			также изучить основные технические		
			решения в области кибернетических и		
			встраиваемых систем.		
			В состав комплекта должен входить		
			набор конструктивных элементов для		
			сборки макета манипуляционного робота,		
			комплект металлических конструктивных		
			элементов для сборки макета мобильного		
			робота и т.п.		
			В состав комплекта входит набор		
			электронных компонентов для изучения		
			основ электроники и схемотехники, а		
i	1	1	1		

также комплект приводов и датчиков различного типа для разработки робототехнических комплексов. В состав комплекта должно входить: моторы с энкодером - не менее 2шт, сервопривод большой - не менее 4шт, сервопривод малый - не менее 2шт, инфракрасный датчик - не менее 3шт, ультразвуковой датчик - не менее 3шт, датчик температуры - не менее 1шт, датчик освещенности - не менее 1шт, набор электронных компонентов (резисторы, конденсаторы, светодиоды различного номинала), комплект проводов для беспаечного прототипирования, плата беспаечного прототипирования, аккумулятор и зарядное устройство, . В состав комплекта должен входить программируемый контроллер, программируемый в среде Arduino IDE или аналогичных свободно распространяемых средах разработки. Программируемый контроллер должен обладать портами для подключения цифровых и аналоговых устройств, интерфейсами TTL, USART, I2C, SPI, Ethernet, Bluetooth или WiFi. В состав комплекта должен входить модуль технического зрения, представляющий собой вычислительное устройство со встроенным микропроцессором (кол-во ядер - не менее 4шт, частота ядра не менее 1.2 ГГц, объем ОЗУ - не менее 512Мб, объем встроенной памяти - не менее 8Гб), интегрированной камерой (максимальное разрешение видеопотока, передаваемого по интерфейсу USB - не менее 2592x1944 ед.) и оптической системой. Модуль технического зрения должен обладать совместимостью с различными программируемыми контроллерами с помощью интерфейсов - TTL, UART, I2C, SPI, Ethernet. Модуль технического зрения должен иметь встроенное программное обеспечение на основе операционной системы Linux, позволяющее осуществлять настройку системы машинного обучения параметров нейронных сетей для обнаружения объектов, определения их параметров и дальнейшей идентификации.

		Комплект должен обеспечивать		
		возможность изучения основ разработки		
		1 1		
		программных и аппаратных комплексов		
		инженерных систем, решений в сфере		
		"Интернет вещей", а также решений в		
		области робототехники, искусственного		
		интеллекта и машинного обучения.		
1.3.2	Образовательный	Образовательный набор должен быть	шт.	3.00
	набор по	предназначен для изучения механики,		
	механике,	мехатроники и робототехники.		
	мехатронике и	Образовательный набор предназначен для		
	робототехнике	разработки программируемых моделей		
		мехатронных систем и мобильных		
		роботов, оснащенных различными		
		манипуляционными и захватными		
		устройствами.		
		В состав набора должно входить:		
		Комплект конструктивных элементов из		
		металла;		
		Комплект для сборки захватного		
		устройства;		
		Сервопривод - не менее 4шт;		
		Сервопривод должен иметь встроенный		
		датчик положения - энкодер. Система		
		управления сервопривода должна		
		обеспечивать информацию о положении		
		выходного вала, нагрузке, температуре.		
		В состав комплекта должен входить		
		робототехнический контроллер,		
		программируемый в среде Arduino IDE.		
		Робототехнический контроллер должен		
		представлять модульное устройство на		
		базе программируемого контроллера и		
		периферийного контроллера. Устройства,		
		входящие в состав робототехнического		
		контроллера, должны быть совместимы		
		друг с другом конструктивным,		
		электрическим и программным		
		образом. Робототехнический контроллер		
		должен обеспечивать совместимость с		
		устройствами (сервоприводы и датчики),		
		входящими в состав образовательного		
		конструктора.		
		Робототехнический контроллер должен		
		удовлетворять следующим техническим		
		характеристикам:		
		Количество портов для подключения		
		внешних цифровых и аналоговых		
		устройств, шт: не менее 10		
		Порты USB для программирования, шт -		
		не менее 1		
		Интерфейс USART, шт - не менее 2		
		Интерфейс I2C, шт - не менее 1		
		Интерфейс SPI, шт - не менее 1		
		Интерфейс Wi-Fi, шт - не менее 1		

 1			,	
		Интерфейс Bluetooth, шт - не менее 1		
		Интерфейс ISP, шт - не менее 1		
		Количество интерфейсов для управления		
		двигателями постоянного тока, шт - не		
		Mehee 2		
		Интерфейсы для подключения устройств		
		базового робототехнического набора, шт		
		- не менее 12		
		В состав комплекта должен входить		
		модуль технического зрения. Модуль		
		технического зрения должен		
		представлять собой вычислительное		
		устройство со встроенным		
		микроконтроллером, интегрированной		
		телекамерой и оптической системой.		
		Модуль технического зрения должен		
		обеспечивать выполнение всех измерений и вычислений посредством собственных		
		вычислении посредством сооственных вычислительных возможностей		
		встроенного микроконтроллера.		
		Модуль технического зрения должен удовлетворять техническим		
		характеристикам:		
		Кол-во градаций цветовой палитры, шт -		
		Не менее 65536		
		Кол-во различных объектов,		
		обнаруживаемых одновременно в секторе		
		обзора модуля, шт - Не менее 10		
		Интерфейс UART, шт - Не менее 1		
		Интерфейс I2C, шт - Не менее 1		
		Интерфейс SPI, шт - Не менее 1		
		Коммуникационный интерфейс типа 3 ріп		
		для связи по последовательной шине - Не		
		менее 2		
		Образовательный набор предназначен		
		изучения принципов функционирования		
		и практического применения элементной		
		базы мехатронных и робототехнических		
		систем, а также основных технических		
		решений при проектирований роботов. В		
		состав комплекта должны входить		
		библиотеки трехмерных моделей		
		конструктивных элементов для		
		проектирования и прототипирования		
		элементов конструкций и механизмов.		
1.3.1	Образовательный	Образовательный конструктор должен		
	конструктор с	представлять собой набор для разработки	шт.	8.00
	комплектом	программируемых моделей автономных		
	датчиков	роботов. В состав набора должно		
		входить: комплект конструктивных		
		элементов из пластика,		
		программируемый контроллер с ЖК		
		экраном - не менее 1шт, сервопривод - не		
		менее 4шт, датчики - не менее 7шт,		
		колесо типа "omni" - не менее 2шт,		

		комплект для сборки гусеничных траков,		
		комплект для сборки цепных передач.		
		В состав комплекта должен входить		
		робототехнический контроллер,		
		программируемый в среде Arduino IDE.		
		Робототехнический контроллер должен		
		представлять модульное устройство на		
		базе программируемого контроллера и		
		периферийного контроллера. Устройства,		
		входящие в состав робототехнического		
		контроллера, должны быть совместимы		
		друг с другом конструктивным,		
		электрическим и программным		
		образом. Робототехнический контроллер		
		должен обеспечивать совместимость с		
		устройствами (сервоприводы и датчики),		
		входящими в состав образовательного		
		конструктора.		
		Робототехнический контроллер должен		
		удовлетворять следующим техническим		
		характеристикам:		
		Количество портов для подключения		
		внешних цифровых и аналоговых		
		устройств, шт: не менее 10		
		Порты USB для программирования, шт -		
		не менее 1		
		Интерфейс USART, шт - не менее 2		
		Интерфейс I2C, шт - не менее 1		
		Интерфейс SPI, шт - не менее 1		
		Интерфейс Wi-Fi, шт - не менее 1		
		Интерфейс Bluetooth, шт - не менее 1		
		Интерфейс ISP, шт - не менее 1		
		Количество интерфейсов для управления		
		двигателями постоянного тока, шт - не		
		менее 2		
		Интерфейсы для подключения устройств		
		базового робототехнического набора, шт		
		- не менее 10.		
		Входящие в состав конструктора		
		компоненты должны быть совместимы с		
		конструктивными элементами, а также		
		обеспечивать возможность		
		конструктивной, аппаратной и		
		программной совместимости с		
		комплектующими из состава набора.		
5.		Дополнительное оборудование		
	1	ехническая система с CV камерой	ШТ.	20
	Полигон для БПЛА «Аэрок		шт.	1
	Любительская мобильная в	оздушная система с возможностью	шт.	4
	визуального управления от	первого лица		